
Basic and advanced network visualization with R
Katherine Ognyanova, www.kateto.net

Sunbelt 2016 Workshop, Newport Beach, CA

Contents

Introduction: Network Visualization 2

Fonts and Colors in R 4

Colors in R plots . 4

Fonts in R plots . 8

Data format, size, and preparation 9

DATASET 1: edgelist . 10

DATASET 2: matrix . 10

Plotting networks with igraph 11

Turning networks into igraph objects . 11

Plotting parameters . 14

Network layouts . 18

Highlighting aspects of the network . 26

Highlighting specific nodes or links . 29

Interactive plotting with tkplot . 32

Other ways to represent a network . 32

Plotting two-mode networks . 34

Quick example using the network package 39

Interactive and dnamic network visualizations 41

Interactive D3 Networks in R . 41

Simple plot animations in R . 42

Interactive and dynamic networks with ndtv-d3 . 43

Overlaying networks on geographic maps 50

1

http://www.kateto.net

Introduction: Network Visualization

The main concern in designing a network visualization is the purpose it has to serve. What are the
structural properties that we want to highlight?

Network visualization goals

The network as a map

Key actors and links

Relationship strength

Diffusion patterns

Structural properties

Communities

A B

Network maps are far from the only visualization available for graphs - other network representation
formats, and even simple charts of key characteristics, may be more appropriate in some cases.

Some network visualization types

Hive plots

Network Maps

Arc diagrams

Biofabric

Statistical charts

Heat maps

2

In network maps, as in other visualization formats, we have several key elements that control the
outcome. The major ones are color, size, shape, and position.

Network visualization controls

Honorable mention: arrows (direction) and labels (identification)

Color

Size

Position

Shape

Modern graph layouts are optimized for speed and aesthetics. In particular, they seek to minimize
overlaps and edge crossing, and ensure similar edge length across the graph.

Layout aesthetics

Minimize edge crossing
No Yes

Prevent overlap
No Yes

Uniform edge length
No Yes

Symmetry
No Yes

3

Note: You can download all workshop materials here, or visit kateto.net/sunbelt2016

This tutorial uses several key packages that you will need to install in order to follow along. Several
other libraries will be mentioned along the way, but those are not critical and can be skipped. The
main libraries we are going to use are igraph (maintained by Gabor Csardi and Tamas Nepusz),
sna & network (maintained by Carter Butts and the Statnet team), and ndtv (maintained by Skye
Bender-deMoll).

install.packages("igraph")
install.packages("network")
install.packages("sna")
install.packages("ndtv")

Fonts and Colors in R

Colors in R plots

Colors are pretty, but more importantly they help people differentiate between types of objects, or
levels of an attribute. In most R functions, you can use named colors, hex, or RGB values. In the
simple base R plot chart below, x and y are the point coordinates, pch is the point symbol shape,
cex is the point size, and col is the color. To see the parameters for plotting in base R, check out
?par.

4

http://www.kateto.net/wordpress/wp-content/uploads/2016/04/sunbelt2016r.zip
http://kateto.net/sunbelt2016
http://igraph.org
http://gaborcsardi.org/
http://hal.elte.hu/~nepusz/
http://cran.r-project.org/web/packages/sna/
http://cran.r-project.org/web/packages/network/
http://erzuli.ss.uci.edu/~buttsc/
http://statnet.org/
http://cran.r-project.org/web/packages/ndtv/
http://skyeome.net/wordpress/
http://skyeome.net/wordpress/

plot(x=1:10, y=rep(5,10), pch=19, cex=3, col="dark red")
points(x=1:10, y=rep(6, 10), pch=19, cex=3, col="557799")
points(x=1:10, y=rep(4, 10), pch=19, cex=3, col=rgb(.25, .5, .3))

You may notice that RGB here ranges from 0 to 1. While this is the R default, you can also set it
to the 0-255 range using something like rgb(10, 100, 100, maxColorValue=255).
We can set the opacity/transparency of an element using the parameter alpha (range 0-1):

plot(x=1:5, y=rep(5,5), pch=19, cex=12, col=rgb(.25, .5, .3, alpha=.5), xlim=c(0,6))

If we have a hex color representation, we can set the transparency alpha using adjustcolor from
package grDevices. For fun, let’s also set the plot background to gray using the par() function
for graphical parameters. We won’t do that below, but we could set the margins of the plot with
par(mar=c(bottom, left, top, right)), or tell R not to clear the previous plot before adding a
new one with par(new=TRUE).

par(bg="gray40")
col.tr <- grDevices::adjustcolor("557799", alpha=0.7)
plot(x=1:5, y=rep(5,5), pch=19, cex=12, col=col.tr, xlim=c(0,6))

5

If you plan on using the built-in color names, here’s how to list all of them:

colors() # List all named colors
grep("blue", colors(), value=T) # Colors that have "blue" in the name

In many cases, we need a number of contrasting colors, or multiple shades of a color. R comes with
some predefined palette function that can generate those for us. For example:

pal1 <- heat.colors(5, alpha=1) # 5 colors from the heat palette, opaque
pal2 <- rainbow(5, alpha=.5) # 5 colors from the heat palette, transparent
plot(x=1:10, y=1:10, pch=19, cex=5, col=pal1)

plot(x=1:10, y=1:10, pch=19, cex=5, col=pal2)

We can also generate our own gradients using colorRampPalette. Note that colorRampPalette
returns a function that we can use to generate as many colors from that palette as we need.

palf <- colorRampPalette(c("gray80", "dark red"))
plot(x=10:1, y=1:10, pch=19, cex=5, col=palf(10))

6

To add transparency to colorRampPalette, you need to use a parameter alpha=TRUE:

palf <- colorRampPalette(c(rgb(1,1,1, .2),rgb(.8,0,0, .7)), alpha=TRUE)
plot(x=10:1, y=1:10, pch=19, cex=5, col=palf(10))

Finding good color combinations is a tough task - and the built-in R palettes are rather limited.
Thankfully there are other available packages for this:

If you don't have R ColorBrewer already, you will need to install it:
install.packages("RColorBrewer")
library(RColorBrewer)
display.brewer.all()

This package has one main function, called brewer.pal. To use it, you just need to select the
desired palette and a number of colors. Let’s take a look at some of the RColorBrewer palettes:

display.brewer.pal(8, "Set3")

display.brewer.pal(8, "Spectral")

display.brewer.pal(8, "Blues")

Using RColorBrewer palettes in plots:

7

pal3 <- brewer.pal(10, "Set3")
plot(x=10:1, y=10:1, pch=19, cex=6, col=pal3)

plot(x=10:1, y=10:1, pch=19, cex=6, col=rev(pal3)) # backwards

Fonts in R plots

Using different fonts for R plots may take a little bit of work. This is especially true if you are using
Windows - Mac & Linux users can most likely skip all of this.

In order to import fonts from the OS into R, we can use the ‘extrafont’ package:

install.packages("extrafont")
library(extrafont)

Import system fonts - may take a while, so DO NOT run this during the workshop.
font_import()
fonts() # See what font families are available to you now.
loadfonts(device = "win") # use device = "pdf" for pdf plot output.

Now that your fonts are available, you should be able to do something like this:

plot(x=10:1, y=10:1, pch=19, cex=3,
main="This is a plot", col="orange",
family="Arial Black")

8

This is a plot

When you save plots as PDF files, you can also embed the fonts:

First you may have to let R know where to find ghostscript on your machine:
Sys.setenv(R_GSCMD = "C:/Program Files/gs/gs9.10/bin/gswin64c.exe")

pdf() will send all the plots we output before dev.off() to a pdf file:
pdf(file="ArialBlack.pdf")
plot(x=10:1, y=10:1, pch=19, cex=6,

main="This is a plot", col="orange",
family="Arial Black")

dev.off()

embed_fonts("ArialBlack.pdf", outfile="ArialBlack_embed.pdf")

Data format, size, and preparation

In this tutorial, we will work primarily with two small example data sets. Both contain data about
media organizations. One involves a network of hyperlinks and mentions among news sources. The
second is a network of links between media venues and consumers.

While the example data used here is small, many of the ideas behind the visualizations we will
generate apply to medium and large-scale networks. This is also the reason why we will rarely use
certain visual properties such as the shape of the node symbols: those are impossible to distinguish
in larger graph maps. In fact, when drawing very big networks we may even want to hide the
network edges, and focus on identifying and visualizing communities of nodes.

At this point, the size of the networks you can visualize in R is limited mainly by the RAM of your
machine. One thing to emphasize though is that in many cases, visualizing larger networks as giant
hairballs is less helpful than providing charts that show key characteristics of the graph.

9

DATASET 1: edgelist

The first data set we are going to work with consists of two files, “Media-Example-NODES.csv” and
“Media-Example-EDGES.csv” (download here).

nodes <- read.csv("Dataset1-Media-Example-NODES.csv", header=T, as.is=T)
links <- read.csv("Dataset1-Media-Example-EDGES.csv", header=T, as.is=T)

Examine the data:

head(nodes)
head(links)
nrow(nodes); length(unique(nodes$id))
nrow(links); nrow(unique(links[,c("from", "to")]))

Notice that there are more links than unique from-to combinations. That means we have cases
in the data where there are multiple links between the same two nodes. We will collapse all links
of the same type between the same two nodes by summing their weights, using aggregate() by
“from”, “to”, & “type”:

links <- aggregate(links[,3], links[,-3], sum)
links <- links[order(links$from, links$to),]
colnames(links)[4] <- "weight"
rownames(links) <- NULL

DATASET 2: matrix

nodes2 <- read.csv("Dataset2-Media-User-Example-NODES.csv", header=T, as.is=T)
links2 <- read.csv("Dataset2-Media-User-Example-EDGES.csv", header=T, row.names=1)

Examine the data:

head(nodes2)
head(links2)

We can see that links2 is an adjacency matrix for a two-mode network. Two-mode or bipartite
graphs have two different types of actors and links that go across, but not within each type. Our
second media example is a network of that kind, examining links between news sources and their
consumers.

links2 <- as.matrix(links2)
dim(links2)
dim(nodes2)

——————–

10

http://www.kateto.net/wordpress/wp-content/uploads/2016/04/sunbelt2016r.zip

Plotting networks with igraph

We start by converting the raw data to an igraph network object.

Turning networks into igraph objects

DATASET 1: edgelist

To convert our data into an igraph network, we will use the graph_from_data_frame() function,
which takes two data frames: d and vertices.

• d describes the edges of the network. Its first two columns are the IDs of the source and the
target node for each edge. The following columns are edge attributes (weight, type, label, or
anything else).

• vertices starts with a column of node IDs. Any following columns are interpreted as node
attributes.

library(igraph)
net <- graph_from_data_frame(d=links, vertices=nodes, directed=T)
net

IGRAPH DNW- 17 49 --
+ attr: name (v/c), media (v/c), media.type (v/n), type.label
| (v/c), audience.size (v/n), type (e/c), weight (e/n)
+ edges (vertex names):
[1] s01->s02 s01->s03 s01->s04 s01->s15 s02->s01 s02->s03 s02->s09
[8] s02->s10 s03->s01 s03->s04 s03->s05 s03->s08 s03->s10 s03->s11
[15] s03->s12 s04->s03 s04->s06 s04->s11 s04->s12 s04->s17 s05->s01
[22] s05->s02 s05->s09 s05->s15 s06->s06 s06->s16 s06->s17 s07->s03
[29] s07->s08 s07->s10 s07->s14 s08->s03 s08->s07 s08->s09 s09->s10
[36] s10->s03 s12->s06 s12->s13 s12->s14 s13->s12 s13->s17 s14->s11
[43] s14->s13 s15->s01 s15->s04 s15->s06 s16->s06 s16->s17 s17->s04

The description of an igraph object starts with four letters:

1. D or U, for a directed or undirected graph
2. N for a named graph (where nodes have a name attribute)
3. W for a weighted graph (where edges have a weight attribute)
4. B for a bipartite (two-mode) graph (where nodes have a type attribute)

The two numbers that follow (17 49) refer to the number of nodes and edges in the graph. The
description also lists node & edge attributes, for example:

• (g/c) - graph-level character attribute
• (v/c) - vertex-level character attribute
• (e/n) - edge-level numeric attribute

11

http://igraph.org/
http://igraph.org/

We also have easy access to nodes, edges, and their attributes with:

E(net) # The edges of the "net" object
V(net) # The vertices of the "net" object
E(net)$type # Edge attribute "type"
V(net)$media # Vertex attribute "media"

Find nodes and edges by attribute:
(that returns oblects of type vertex sequence/edge sequence)
V(net)[media=="BBC"]
E(net)[type=="mention"]

You can also examine the network matrix directly:
net[1,]
net[5,7]

It is also easy to extract an edge list or matrix back from the igraph network:

Get an edge list or a matrix:
as_edgelist(net, names=T)
as_adjacency_matrix(net, attr="weight")

Or data frames describing nodes and edges:
as_data_frame(net, what="edges")
as_data_frame(net, what="vertices")

Now that we have our igraph network object, let’s make a first attempt to plot it.

plot(net) # not a pretty picture!

s01
s02

s03
s04

s05

s06

s07

s08

s09

s10

s11 s12

s13s14

s15

s16

s17

That doesn’t look very good. Let’s start fixing things by removing the loops in the graph.

12

net <- simplify(net, remove.multiple = F, remove.loops = T)

You might notice that we could have used simplify to combine multiple edges by summing their
weights with a command like simplify(net, edge.attr.comb=list(Weight="sum","ignore")).
The problem is that this would also combine multiple edge types (in our data: “hyperlinks” and
“mentions”).

Let’s and reduce the arrow size and remove the labels (we do that by setting them to NA):

plot(net, edge.arrow.size=.4,vertex.label=NA)

DATASET 2: matrix

As we have seen above, the edges of our second network are in a matrix format. We can read those
into a graph object using graph_from_incidence_matrix(). In igraph, bipartite networks have
a node attribute called type that is FALSE (or 0) for vertices in one mode and TRUE (or 1) for
those in the other mode.

head(nodes2)
head(links2)

net2 <- graph_from_incidence_matrix(links2)
table(V(net2)$type)

To transform a one-mode network matrix into an igraph object, use graph_from_adjacency_matrix().

13

Plotting parameters

Plotting with igraph: the network plots have a wide set of parameters you can set. Those include
node options (starting with vertex.) and edge options (starting with edge.). A list of selected
options is included below, but you can also check out ?igraph.plotting for more information.

The igraph plotting parameters include (among others):

NODES
vertex.color Node color

vertex.frame.color Node border color
vertex.shape One of “none”, “circle”, “square”, “csquare”, “rectangle”

“crectangle”, “vrectangle”, “pie”, “raster”, or “sphere”
vertex.size Size of the node (default is 15)

vertex.size2 The second size of the node (e.g. for a rectangle)
vertex.label Character vector used to label the nodes

vertex.label.family Font family of the label (e.g.“Times”, “Helvetica”)
vertex.label.font Font: 1 plain, 2 bold, 3, italic, 4 bold italic, 5 symbol
vertex.label.cex Font size (multiplication factor, device-dependent)
vertex.label.dist Distance between the label and the vertex

vertex.label.degree The position of the label in relation to the vertex, where
0 is right, “pi” is left, “pi/2” is below, and “-pi/2” is above

EDGES
edge.color Edge color

edge.width Edge width, defaults to 1
edge.arrow.size Arrow size, defaults to 1

edge.arrow.width Arrow width, defaults to 1
edge.lty Line type, could be 0 or “blank”, 1 or “solid”, 2 or “dashed”,

3 or “dotted”, 4 or “dotdash”, 5 or “longdash”, 6 or “twodash”
edge.label Character vector used to label edges

edge.label.family Font family of the label (e.g.“Times”, “Helvetica”)
edge.label.font Font: 1 plain, 2 bold, 3, italic, 4 bold italic, 5 symbol
edge.label.cex Font size for edge labels

edge.curved Edge curvature, range 0-1 (FALSE sets it to 0, TRUE to 0.5)
arrow.mode Vector specifying whether edges should have arrows,

possible values: 0 no arrow, 1 back, 2 forward, 3 both
OTHER

margin Empty space margins around the plot, vector with length 4
frame if TRUE, the plot will be framed
main If set, adds a title to the plot

sub If set, adds a subtitle to the plot
asp Numeric, the aspect ratio of a plot (y/x).

palette A color palette to use for vertex color
rescale Whether to rescale coordinates to [-1,1]. Default is TRUE.

14

We can set the node & edge options in two ways - the first one is to specify them in the plot()
function, as we are doing below.

Plot with curved edges (edge.curved=.1) and reduce arrow size:
Note that using curved edges will allow you to see multiple links
between two nodes (e.g. links going in either direction, or multiplex links)
plot(net, edge.arrow.size=.4, edge.curved=.1)

s01
s02

s03

s04

s05

s06

s07

s08

s09

s10

s11

s12

s13

s14

s15

s16

s17

Set edge color to light gray, the node & border color to orange
Replace the vertex label with the node names stored in "media"
plot(net, edge.arrow.size=.2, edge.color="orange",

vertex.color="orange", vertex.frame.color="#ffffff",
vertex.label=V(net)$media, vertex.label.color="black")

NY Times

Washington Post

Wall Street Journal

USA Today

LA Times

New York Post

CNN

MSNBC

FOX News

ABC

BBC

Yahoo News

Google News

Reuters.com

NYTimes.com

WashingtonPost.com
AOL.com

The second way to set attributes is to add them to the igraph object. Let’s say we want to color
our network nodes based on type of media, and size them based on degree centrality (more links ->
larger node) We will also change the width of the edges based on their weight.

15

Generate colors based on media type:
colrs <- c("gray50", "tomato", "gold")
V(net)$color <- colrs[V(net)$media.type]

Compute node degrees (#links) and use that to set node size:
deg <- degree(net, mode="all")
V(net)$size <- deg*3
We could also use the audience size value:
V(net)$size <- V(net)$audience.size*0.6

The labels are currently node IDs.
Setting them to NA will render no labels:
V(net)$label <- NA

Set edge width based on weight:
E(net)$width <- E(net)$weight/6

#change arrow size and edge color:
E(net)$arrow.size <- .2
E(net)$edge.color <- "gray80"
E(net)$width <- 1+E(net)$weight/12
plot(net)

We can also override the attributes explicitly in the plot:

plot(net, edge.color="orange", vertex.color="gray50")

16

It helps to add a legend explaining the meaning of the colors we used:

plot(net)
legend(x=-1.5, y=-1.1, c("Newspaper","Television", "Online News"), pch=21,

col="#777777", pt.bg=colrs, pt.cex=2, cex=.8, bty="n", ncol=1)

Newspaper
Television
Online News

Sometimes, especially with semantic networks, we may be interested in plotting only the labels of
the nodes:

plot(net, vertex.shape="none", vertex.label=V(net)$media,
vertex.label.font=2, vertex.label.color="gray40",
vertex.label.cex=.7, edge.color="gray85")

17

NY Times

Washington Post
Wall Street Journal

USA Today
LA Times

New York Post

CNN MSNBC

FOX News
ABC

BBC

Yahoo News
Google News

Reuters.com

NYTimes.com

WashingtonPost.com

AOL.com

Let’s color the edges of the graph based on their source node color. We can get the starting node for
each edge with the ends() igraph function. It returns the start and end vertext for edges listed in
the es parameter. The names parameter control whether the function returns edge names or IDs.

edge.start <- ends(net, es=E(net), names=F)[,1]
edge.col <- V(net)$color[edge.start]

plot(net, edge.color=edge.col, edge.curved=.1)

Network layouts

Network layouts are simply algorithms that return coordinates for each node in a network.
For the purposes of exploring layouts, we will generate a slightly larger 80-node graph. We use the
sample_pa() function which generates a simple graph starting from one node and adding more
nodes and links based on a preset level of preferential attachment (Barabasi-Albert model).

18

net.bg <- sample_pa(80)
V(net.bg)$size <- 8
V(net.bg)$frame.color <- "white"
V(net.bg)$color <- "orange"
V(net.bg)$label <- ""
E(net.bg)$arrow.mode <- 0
plot(net.bg)

You can set the layout in the plot function:

plot(net.bg, layout=layout_randomly)

Or you can calculate the vertex coordinates in advance:

l <- layout_in_circle(net.bg)
plot(net.bg, layout=l)

19

l is simply a matrix of x, y coordinates (N x 2) for the N nodes in the graph. You can easily
generate your own:

l <- cbind(1:vcount(net.bg), c(1, vcount(net.bg):2))
plot(net.bg, layout=l)

This layout is just an example and not very helpful - thankfully igraph has a number of built-in
layouts, including:

Randomly placed vertices
l <- layout_randomly(net.bg)
plot(net.bg, layout=l)

20

Circle layout
l <- layout_in_circle(net.bg)
plot(net.bg, layout=l)

3D sphere layout
l <- layout_on_sphere(net.bg)
plot(net.bg, layout=l)

21

Fruchterman-Reingold is one of the most used force-directed layout algorithms out there.

Force-directed layouts try to get a nice-looking graph where edges are similar in length and cross
each other as little as possible. They simulate the graph as a physical system. Nodes are electrically
charged particles that repulse each other when they get too close. The edges act as springs that
attract connected nodes closer together. As a result, nodes are evenly distributed through the chart
area, and the layout is intuitive in that nodes which share more connections are closer to each
other. The disadvantage of these algorithms is that they are rather slow and therefore less often
used in graphs larger than ~1000 vertices. You can set the “weight” parameter which increases the
attraction forces among nodes connected by heavier edges.

l <- layout_with_fr(net.bg)
plot(net.bg, layout=l)

You will notice that this layout is not deterministic - different runs will result in slightly different
configurations. Saving the layout in l allows us to get the exact same result multiple times, which
can be helpful if you want to plot the time evolution of a graph, or different relationships – and
want nodes to stay in the same place in multiple plots.

par(mfrow=c(2,2), mar=c(0,0,0,0)) # plot four figures - 2 rows, 2 columns
plot(net.bg, layout=layout_with_fr)
plot(net.bg, layout=layout_with_fr)
plot(net.bg, layout=l)
plot(net.bg, layout=l)

22

dev.off()

By default, the coordinates of the plots are rescaled to the [-1,1] interval for both x and y. You can
change that with the parameter rescale=FALSE and rescale your plot manually by multiplying the
coordinates by a scalar. You can use norm_coords to normalize the plot with the boundaries you
want. This way you can create more compact or spread out layout versions.

l <- layout_with_fr(net.bg)
l <- norm_coords(l, ymin=-1, ymax=1, xmin=-1, xmax=1)

par(mfrow=c(2,2), mar=c(0,0,0,0))
plot(net.bg, rescale=F, layout=l*0.4)
plot(net.bg, rescale=F, layout=l*0.6)
plot(net.bg, rescale=F, layout=l*0.8)
plot(net.bg, rescale=F, layout=l*1.0)

23

dev.off()

Another popular force-directed algorithm that produces nice results for connected graphs is Kamada
Kawai. Like Fruchterman Reingold, it attempts to minimize the energy in a spring system.

l <- layout_with_kk(net.bg)
plot(net.bg, layout=l)

The LGL algorithm is meant for large, connected graphs. Here you can also specify a root: a node
that will be placed in the middle of the layout.

24

plot(net.bg, layout=layout_with_lgl)

Let’s take a look at all available layouts in igraph:

layouts <- grep("^layout_", ls("package:igraph"), value=TRUE)[-1]
Remove layouts that do not apply to our graph.
layouts <- layouts[!grepl("bipartite|merge|norm|sugiyama|tree", layouts)]

par(mfrow=c(3,3), mar=c(1,1,1,1))
for (layout in layouts) {

print(layout)
l <- do.call(layout, list(net))
plot(net, edge.arrow.mode=0, layout=l, main=layout) }

layout_as_star layout_components layout_in_circle

layout_nicely layout_on_grid layout_on_sphere

25

layout_randomly layout_with_dh layout_with_drl

layout_with_fr layout_with_gem layout_with_graphopt

layout_with_kk layout_with_lgl layout_with_mds

Highlighting aspects of the network

Notice that our network plot is still not too helpful. We can identify the type and size of nodes,
but cannot see much about the structure since the links we’re examining are so dense. One way to
approach this is to see if we can sparsify the network, keeping only the most important ties and
discarding the rest.

hist(links$weight)
mean(links$weight)
sd(links$weight)

There are more sophisticated ways to extract the key edges, but for the purposes of this exercise
we’ll only keep ones that have weight higher than the mean for the network. In igraph, we can
delete edges using delete_edges(net, edges):

26

cut.off <- mean(links$weight)
net.sp <- delete_edges(net, E(net)[weight<cut.off])
plot(net.sp)

Another way to think about this is to plot the two tie types (hyperlink & mention) separately.

E(net)$width <- 1.5
plot(net, edge.color=c("dark red", "slategrey")[(E(net)$type=="hyperlink")+1],

vertex.color="gray40", layout=layout_in_circle, edge.curved=.3)

net.m <- net - E(net)[E(net)$type=="hyperlink"] # another way to delete edges:
net.h <- net - E(net)[E(net)$type=="mention"] # using the minus operator

Plot the two links separately:
par(mfrow=c(1,2))
plot(net.h, vertex.color="orange", main="Tie: Hyperlink")
plot(net.m, vertex.color="lightsteelblue2", main="Tie: Mention")

27

Tie: Hyperlink Tie: Mention

Make sure the nodes stay in place in both plots:
l <- layout_with_fr(net)
plot(net.h, vertex.color="orange", layout=l, main="Tie: Hyperlink")
plot(net.m, vertex.color="lightsteelblue2", layout=l, main="Tie: Mention")

Tie: Hyperlink Tie: Mention

dev.off()

We can also try to make the network map more useful by showing the communities within it:

par(mfrow=c(1,2))

Community detection based on label propagation:
clp <- cluster_label_prop(net)
class(clp)

Community detection returns an object of class "communities"
which igraph knows how to plot:
plot(clp, net)

We can also plot the communities without relying on their built-in plot:
V(net)$community <- clp$membership

28

colrs <- adjustcolor(c("gray50", "tomato", "gold", "yellowgreen"), alpha=.6)
plot(net, vertex.color=colrs[V(net)$community])

dev.off()

Highlighting specific nodes or links

Sometimes we want to focus the visualization on a particular node or a group of nodes. In our
example media network, we can examine the spread of information from focal actors. For instance,
let’s represent distance from the NYT.
The distances function returns a matrix of shortest paths from nodes listed in the v paramter to
ones included in the to parameter.

dist.from.NYT <- distances(net, v=V(net)[media=="NY Times"],
to=V(net), weights=NA)

Set colors to plot the distances:
oranges <- colorRampPalette(c("dark red", "gold"))
col <- oranges(max(dist.from.NYT)+1)
col <- col[dist.from.NYT+1]

plot(net, vertex.color=col, vertex.label=dist.from.NYT, edge.arrow.size=.6,
vertex.label.color="white")

0 1

11

1

2

2

2

2

2

22

3
3

1

3

2

29

We can also highlight a path in the network:

news.path <- shortest_paths(net,
from = V(net)[media=="MSNBC"],
to = V(net)[media=="New York Post"],
output = "both") # both path nodes and edges

Generate edge color variable to plot the path:
ecol <- rep("gray80", ecount(net))
ecol[unlist(news.path$epath)] <- "orange"
Generate edge width variable to plot the path:
ew <- rep(2, ecount(net))
ew[unlist(news.path$epath)] <- 4
Generate node color variable to plot the path:
vcol <- rep("gray40", vcount(net))
vcol[unlist(news.path$vpath)] <- "gold"

plot(net, vertex.color=vcol, edge.color=ecol,
edge.width=ew, edge.arrow.mode=0)

We can highlight the edges going into or out of a vertex, for instance the WSJ. For a single node,
use incident(), for multiple nodes use incident_edges()

inc.edges <- incident(net, V(net)[media=="Wall Street Journal"], mode="all")

Set colors to plot the selected edges.
ecol <- rep("gray80", ecount(net))
ecol[inc.edges] <- "orange"
vcol <- rep("grey40", vcount(net))
vcol[V(net)$media=="Wall Street Journal"] <- "gold"
plot(net, vertex.color=vcol, edge.color=ecol)

30

We can also point to the immediate neighbors of a vertex, say WSJ. The neighbors function
finds all nodes one step out from the focal actor.To find the neighbors for multiple nodes, use
adjacent_vertices() instead of neighbors(). To find node neighborhoods going more than one
step out, use function ego() with parameter order set to the number of steps out to go from the
focal node(s).

neigh.nodes <- neighbors(net, V(net)[media=="Wall Street Journal"], mode="out")

Set colors to plot the neighbors:
vcol[neigh.nodes] <- "#ff9d00"
plot(net, vertex.color=vcol)

A way to draw attention to a group of nodes (we saw this before with communities) is to “mark”
them:

par(mfrow=c(1,2))
plot(net, mark.groups=c(1,4,5,8), mark.col="#C5E5E7", mark.border=NA)

Mark multiple groups:
plot(net, mark.groups=list(c(1,4,5,8), c(15:17)),

mark.col=c("#C5E5E7","#ECD89A"), mark.border=NA)

31

dev.off()

Interactive plotting with tkplot

R and igraph allow for interactive plotting of networks. This might be a useful option for you if you
want to tweak slightly the layout of a small graph. After adjusting the layout manually, you can get
the coordinates of the nodes and use them for other plots.

tkid <- tkplot(net) #tkid is the id of the tkplot that will open
l <- tkplot.getcoords(tkid) # grab the coordinates from tkplot
plot(net, layout=l)

Other ways to represent a network

At this point it might be useful to provide a quick reminder that there are many ways to represent
a network not limited to a hairball plot.

For example, here is a quick heatmap of the network matrix:

32

netm <- get.adjacency(net, attr="weight", sparse=F)
colnames(netm) <- V(net)$media
rownames(netm) <- V(net)$media

palf <- colorRampPalette(c("gold", "dark orange"))
heatmap(netm[,17:1], Rowv = NA, Colv = NA, col = palf(100),

scale="none", margins=c(10,10))
A

O
L.

co
m

W
as

hi
ng

to
nP

os
t.c

om
N

Y
T

im
es

.c
om

R
eu

te
rs

.c
om

G
oo

gl
e

N
ew

s
Ya

ho
o

N
ew

s
B

B
C

A
B

C
F

O
X

 N
ew

s
M

S
N

B
C

C
N

N
N

ew
 Y

or
k

P
os

t
LA

 T
im

es
U

S
A

 T
od

ay
W

al
l S

tr
ee

t J
ou

rn
al

W
as

hi
ng

to
n

P
os

t
N

Y
 T

im
es

NY Times
Washington Post
Wall Street Journal
USA Today
LA Times
New York Post
CNN
MSNBC
FOX News
ABC
BBC
Yahoo News
Google News
Reuters.com
NYTimes.com
WashingtonPost.com
AOL.com

Depending on what properties of the network or its nodes and edges are most important to you,
simple graphs can often be more informative than network maps.

Plot the egree distribution for our network:
deg.dist <- degree_distribution(net, cumulative=T, mode="all")
plot(x=0:max(deg), y=1-deg.dist, pch=19, cex=1.2, col="orange",

xlab="Degree", ylab="Cumulative Frequency")

33

0 2 4 6 8 10 12

0.
0

0.
4

0.
8

Degree

C
um

ul
at

iv
e

F
re

qu
en

cy

Plotting two-mode networks

As you might remember, our second media example is a two-mode network examining links between
news sources and their consumers.

head(nodes2)
head(links2)

net2
plot(net2, vertex.label=NA)

As with one-mode networks, we can modify the network object to include the visual properties that
will be used by default when plotting the network. Notice that this time we will also change the
shape of the nodes - media outlets will be squares, and their users will be circles.

34

Media outlets are blue squares, audience nodes are orange circles:
V(net2)$color <- c("steel blue", "orange")[V(net2)$type+1]
V(net2)$shape <- c("square", "circle")[V(net2)$type+1]

Media outlets will have name labels, audience members will not:
V(net2)$label <- ""
V(net2)$label[V(net2)$type==F] <- nodes2$media[V(net2)$type==F]
V(net2)$label.cex=.6
V(net2)$label.font=2

plot(net2, vertex.label.color="white", vertex.size=(2-V(net2)$type)*8)

NYT

WaPo

WSJ

USAT

LATimes

CNN

MSNBC

FOX

ABC

BBC

In igraph, there is also a special layout for bipartite networks (though it doesn’t always work great,
and you might be better off generating your own two-mode layout).

plot(net2, vertex.label=NA, vertex.size=7, layout=layout.bipartite)

35

Using text as nodes may be helpful at times:

plot(net2, vertex.shape="none", vertex.label=nodes2$media,
vertex.label.color=V(net2)$color, vertex.label.font=2,
vertex.label.cex=.6, edge.color="gray70", edge.width=2)

NYT

WaPo

WSJ

USAT
LATimes

CNN

MSNBC

FOX

ABC

BBC

John

MaryPaul

Ted Tom

Kate

Ed
Anna

Dan

Nancy
SandraRonda

Sheila

Jim

Jill
Jo

Brian

Jason Lisa

Dave

In this example, we will also experiment with the use of images as nodes. In order to do this, you
will need the png library (if missing, install with install.packages("png")

install.packages("png")
library(png)

img.1 <- readPNG("./images/news.png")
img.2 <- readPNG("./images/user.png")

V(net2)$raster <- list(img.1, img.2)[V(net2)$type+1]

plot(net2, vertex.shape="raster", vertex.label=NA,
vertex.size=16, vertex.size2=16, edge.width=2)

36

By the way, we can also add any image we want to a plot. For example, many network graphs can
be largely improved by a photo of a puppy carrying a basket full of kittens.

plot(net2, vertex.shape="raster", vertex.label=NA,
vertex.size=16, vertex.size2=16, edge.width=2)

img.3 <- readPNG("./images/puppy.png")
rasterImage(img.3, xleft=-1.7, xright=0, ybottom=-1.2, ytop=0)

37

The numbers after the image are its coordinates
The limits of your plotting area are given in par()$usr

We can also generate and plot bipartite projections for the two-mode network: co-memberships are
easy to calculate by multiplying the network matrix by its transposed matrix, or using igraph’s
bipartite.projection() function.

par(mfrow=c(1,2))

net2.bp <- bipartite.projection(net2)

plot(net2.bp$proj1, vertex.label.color="black", vertex.label.dist=1,
vertex.label=nodes2$media[!is.na(nodes2$media.type)])

plot(net2.bp$proj2, vertex.label.color="black", vertex.label.dist=1,
vertex.label=nodes2$media[is.na(nodes2$media.type)])

NYT

WaPo

WSJ

USAT LATimes

CNN

MSNBC
FOX

ABC

BBC

John

Mary

Paul

Ted

Tom

Kate

EdAnna

Dan

Nancy

Sandra

Ronda
Sheila

Jim

Jill

Jo

Brian

Jason

Lisa

Dave

dev.off()

It is a good practice to detach packages when we stop needing them. Try to remember that especially
with igraph and the statnet family packages, as bad things tend to happen if you have them
loaded together.

detach(package:png)
detach(package:igraph)

38

Quick example using the network package

Plotting with the network package is very similar to that with igraph - although the notation is
slightly different (a whole new set of parameter names!). This package also uses less default controls
obtained by modifying the network object, and more explicit parameters in the plotting function.
Here is a quick example using the (by now familiar) media network. We will begin by converting
the data into the network format used by the Statnet family of packages (including network, sna,
ergm, stergm, and others).
As in igraph, we can generate a ‘network’ object from an edge list, an adjacency matrix, or an
incidence matrix. You can get the specifics with ?edgeset.constructors. Here as in igraph above,
we will use the edge list and the node attribute data frames to create the network object. One
specific thing to pay attention to here is the ignore.eval parameter. It is set to TRUE by default,
and that setting causes the network object to disregard edge weights.

library(network)

net3 <- network(links, vertex.attr=nodes, matrix.type="edgelist",
loops=F, multiple=F, ignore.eval = F)

Here again we can easily access the edges, vertices, and the network matrix:

net3[,]
net3 %n% "net.name" <- "Media Network" # network attribute
net3 %v% "media" # Node attribute
net3 %e% "type" # Node attribute

Let’s plot our media network once again:

net3 %v% "col" <- c("gray70", "tomato", "gold")[net3 %v% "media.type"]
plot(net3, vertex.cex=(net3 %v% "audience.size")/7, vertex.col="col")

Note that - as in igraph - the plot returns the node position coordinates. You can use them in other
plots using the coord parameter.

39

l <- plot(net3, vertex.cex=(net3 %v% "audience.size")/7, vertex.col="col")
plot(net3, vertex.cex=(net3 %v% "audience.size")/7, vertex.col="col", coord=l)

detach(package:network)

The network package also offers the option to edit a plot interactively, by setting the parameter
interactive=T:

plot(net3, vertex.cex=(net3 %v% "audience.size")/7, vertex.col="col", interactive=T)

For a full list of parameters that you can use in the network package, check out ?plot.network.

40

Interactive and dnamic network visualizations

Interactive D3 Networks in R

These days it is increasingly easier to export R plots to html/javascript output. There are a number
of libraries like rcharts and htmlwidgets that can help you create interactive web charts right
from R. We’ll take a quick look at networkD3 which - as its name suggests - generates interactive
network visualizations using the D3 javascript library.

One thing to keep in mind is that the visualizations generated by networkD3 are most useful as a
starting point for further work. If you know a little bit of javascript, you can use them as a first
step and tweak the results to get closer to what you want.

If you don’t have the networkD3 library, install it now:

install.packages("networkD3")

The data that this library needs from is is in the standard edge list form, with a few little twists.
In order for things to work, the node IDs have to be numeric, and they also have to start from 0.
An easy was to get there is to transform our character IDs to a factor variable, transform that to
numeric, and make sure it starts from zero by subtracting 1.

library(networkD3)

el <- data.frame(from=as.numeric(factor(links$from))-1,
to=as.numeric(factor(links$to))-1)

The nodes need to be in the same order as the “source” column in links:

nl <- cbind(idn=factor(nodes$media, levels=nodes$media), nodes)

Now we can generate the interactive chart. The Group parameter in it is used to color the nodes.
Nodesize is not (as one might think) the size of the node, but the number of the column in the node
data that should be used for sizing. The charge parameter controls node repulsion (if negative) or
attraction (if positive).

forceNetwork(Links = el, Nodes = nl, Source="from", Target="to",
NodeID = "idn", Group = "type.label",linkWidth = 1,
linkColour = "#afafaf", fontSize=12, zoom=T, legend=T,
Nodesize=6, opacity = 0.8, charge=-300,
width = 600, height = 600)

41

http://christophergandrud.github.io/d3Network/

Simple plot animations in R

If you have already installed “ndtv”, you should also have a package used by it called “animation”.
If not, now is a good time to install it with install.packages('animation'). Note that this
package provides a simple technique to create various (not necessarily network-related) animations
in R. It works by generating multiple plots and combining them in an animated GIF.
The catch here is that in order for this to work, you need not only the R package, but also an
additional software called ImageMagick (imagemagick.org). You probably don’t want to install that
during the workshop, but you can try it at home.

library(animation)
library(igraph)

ani.options("convert") # Check that the package knows where to find ImageMagick
If it doesn't know where to find it, give it the correct path for your system.
ani.options(convert="C:/Program Files/ImageMagick-6.8.8-Q16/convert.exe")

We will now generate 4 network plots (the same way we did before), only this time we’ll do it
within the saveGIF command. The animation interval is set with interval, and the movie.name
parameter controls name of the gif.

l <- layout.fruchterman.reingold(net)

saveGIF({ col <- rep("grey40", vcount(net))
plot(net, vertex.color=col, layout=l)

step.1 <- V(net)[media=="Wall Street Journal"]
col[step.1] <- "#ff5100"
plot(net, vertex.color=col, layout=l)

step.2 <- unlist(neighborhood(net, 1, step.1, mode="out"))
col[setdiff(step.2, step.1)] <- "#ff9d00"
plot(net, vertex.color=col, layout=l)

42

imagemagick.org

step.3 <- unlist(neighborhood(net, 2, step.1, mode="out"))
col[setdiff(step.3, step.2)] <- "#FFDD1F"
plot(net, vertex.color=col, layout=l) },

interval = .8, movie.name="network_animation.gif")

detach(package:igraph)
detach(package:animation)

Interactive and dynamic networks with ndtv-d3

Interactive plots of static networks

Here we will create somewhat more sophisticated D3 visualizations using the ndtv package. You
should not need additional software to produce web animations with D3. If you want to save the
animations as video files (check out ?saveVideo), you would have to install a video converter called
FFmpeg (http://ffmpg.org). To find out how to get the right installation for your OS, check out
?install.ffmpeg. To use all available layouts, you would also need to have Java installed on your
machine.

install.packages("ndtv", dependencies=T)

As this package is part of the Statnet family, it will accept objects from the network package such
as the one we created earlier.

library(ndtv)
net3

Most of the parameters below are self-explanatory at this point (bg is the background color of the
plot). Two new parameters we haven’t used before are vertex.tooltip and edge.tooltip. Those
contain the information that we can see when moving the mouse cursor over network elements. Note
that the tooltip parameters accepts html tags – for example we will use the line break tag
.
The parameter launchBrowser instructs R to open the resulting visualization file (filename) in
the browser.

43

http://ffmpg.org

render.d3movie(net3, usearrows = F, displaylabels = F, bg="#111111",
vertex.border="#ffffff", vertex.col = net3 %v% "col",
vertex.cex = (net3 %v% "audience.size")/8,
edge.lwd = (net3 %e% "weight")/3, edge.col = '#55555599',
vertex.tooltip = paste("Name:", (net3 %v% 'media') , "
",

"Type:", (net3 %v% 'type.label')),
edge.tooltip = paste("Edge type:", (net3 %e% 'type'), "
",

"Edge weight:", (net3 %e% "weight")),
launchBrowser=F, filename="Media-Network.html")

If you are going to embed the image in a markdown document, use output.mode='inline' above.

Network evolution animations

Animated visualizations are a good way to show the evolution of a small or medium size network
over time. At present, ndtv is the best R package for that – especially since recently it added D3
visualizations to its capabilities.

In order to work with the network animations in ndtv, we need to understand Statnet’s dynamic
network format, implemented in the networkDynamic package. Let’s look at one of the example
data sets included in the package:

data(short.stergm.sim)
short.stergm.sim
head(as.data.frame(short.stergm.sim))

onset terminus tail head onset.censored
1 0 1 3 5 FALSE
2 10 20 3 5 FALSE
3 0 25 3 6 FALSE
4 0 1 3 9 FALSE
5 2 25 3 9 FALSE

44

6 0 4 3 11 FALSE

terminus.censored duration edge.id
1 FALSE 1 1
2 FALSE 10 1
3 FALSE 25 2
4 FALSE 1 3
5 FALSE 23 3
6 FALSE 4 4

What we see here is an edge list. Each edge goes from the node with ID in the tail column to
node with ID in the head column. The edge exists from time point onset to time point terminus.
The idea of onset and terminus censoring refers to start and end points enforced by the beginning
and end of network observation rather than by actual tie formation/dissolution.

We can simply plot the network disregarding its time component (combining all nodes & edges that
were ever present):

plot(short.stergm.sim)

Plot the network at time 1:

plot(network.extract(short.stergm.sim, at=1))

Plot nodes & vertices that were active from time 1 to time 5:

45

plot(network.extract(short.stergm.sim, onset=1, terminus=5, rule="all"))

Plot all nodes and vertices that were active between time 1 & 10:

plot(network.extract(short.stergm.sim, onset=1, terminus=10, rule="any"))

Let’s make a quick d3 animation from the example network:

render.d3movie(short.stergm.sim,displaylabels=TRUE)

46

We are now ready to create and animate our own dynamic network. Dynamic network object can be
generated in a number of ways: from a set of networks/matrices representing different time points;
from data frames/matrices with node lists and edge lists indicating when each is active, or when
they switch state. You can check out ?networkDynamic for more information.
We are going to add a time component to our media network example. The code below takes a
0-to-50 time interval and sets the nodes in the network as active throughout (time 0 to 50). The
edges of the network appear one by one, and each one is active from their first activation until time
point 50. We generate this longitudinal network using networkDynamic with our node times as
node.spells and edge times as edge.spells.

vs <- data.frame(onset=0, terminus=50, vertex.id=1:17)
es <- data.frame(onset=1:49, terminus=50,

head=as.matrix(net3, matrix.type="edgelist")[,1],
tail=as.matrix(net3, matrix.type="edgelist")[,2])

net3.dyn <- networkDynamic(base.net=net3, edge.spells=es, vertex.spells=vs)

If we try to just plot the networkDynamic network, what we get is a combined network for the
entire time period under observation – or as it happens, our original media example.

plot(net3.dyn, vertex.cex=(net3 %v% "audience.size")/7, vertex.col="col")

One way to show the network evolution is through static images from different time points. While
we can generate those one by one as we did above, ndtv offers an easier way. The command to do
that is filmstrip. As in the par() function controlling base R plot parameters, here mfrow sets the
number of rows and columns in the multi-plot grid.

filmstrip(net3.dyn, displaylabels=F, mfrow=c(1, 5),
slice.par=list(start=0, end=49, interval=10,

aggregate.dur=10, rule='any'))

t=0−10 t=10−20 t=20−30 t=30−40 t=40−50

We can pre-compute the animation coordinates (otherwise they get calculated when you generate
the animation). Here animation.mode is the layout algorithm - one of “kamadakawai”, “MDSJ”,
“Graphviz”and “useAttribute” (user-generated coordinates).
The parameter interval is the time between layouts, aggregate.dur is the time presented in each
layout, rule is the rule for displaying elements (e.g. any: active any toime during that period, all
active the entire period, etc.)

47

compute.animation(net3.dyn, animation.mode = "kamadakawai",
slice.par=list(start=0, end=50, interval=1,

aggregate.dur=1, rule='any'))

render.d3movie(net3.dyn, usearrows = F,
displaylabels = F, label=net3 %v% "media",
bg="#ffffff", vertex.border="#333333",
vertex.cex = degree(net3)/2,
vertex.col = net3.dyn %v% "col",
edge.lwd = (net3.dyn %e% "weight")/3,
edge.col = '#55555599',
vertex.tooltip = paste("Name:", (net3.dyn %v% "media") , "
",

"Type:", (net3.dyn %v% "type.label")),
edge.tooltip = paste("Edge type:", (net3.dyn %e% "type"), "
",

"Edge weight:", (net3.dyn %e% "weight")),
launchBrowser=T, filename="Media-Network-Dynamic.html",
render.par=list(tween.frames = 30, show.time = F),
plot.par=list(mar=c(0,0,0,0)), output.mode='inline')

To embed this, we add parameter output.mode='inline'.

In addition to dynamic nodes and edges, ndtv takes dynamic attributes. We could have added
those to the es and vs data frames above. In addition, the plotting function can evaluate special
parameters and generate dynamic arguments on the fly. For example, function(slice) { do some

48

calculations with slice } will perform operations on the current time slice, allowing us to change
parameters dynamically.

See the node size below:

render.d3movie(net3.dyn, usearrows = F,
displaylabels = F, label=net3 %v% "media",
bg="#000000", vertex.border="#dddddd",
vertex.cex = function(slice){ degree(slice)/2.5 },
vertex.col = net3.dyn %v% "col",
edge.lwd = (net3.dyn %e% "weight")/3,
edge.col = '#55555599',
vertex.tooltip = paste("Name:", (net3.dyn %v% "media") , "
",

"Type:", (net3.dyn %v% "type.label")),
edge.tooltip = paste("Edge type:", (net3.dyn %e% "type"), "
",

"Edge weight:", (net3.dyn %e% "weight")),
launchBrowser=T, filename="Media-Network-even-more-Dynamic.html",
render.par=list(tween.frames = 15, show.time = F), output.mode='inline',
slice.par=list(start=0, end=50, interval=4, aggregate.dur=4, rule='any'))

——————–

49

Overlaying networks on geographic maps

The example presented in this section uses only base R and mapping libraries. If you do have
experience with ggplot2, that package does provides a more versatile way of approaching this task.
The code using ggplot() would be similar to what you will see below, but you would use ‘borders()’
to plot the map and ‘geom_path()’ for the edges.
In order to plot on a map, we will need a few more packages. Library maps will help us generate a
geographic map to use as background, and geosphere will help us generate arcs representing our
network edges. If you do not already have them, install the two packages, then load them.

install.packages("maps")
install.packages("geosphere")

library(maps)
library(geosphere)

Let us plot some example maps with the maps library. The parameters of maps() include col for
the map fill, border for the border color, and bg for the background color.

par(mfrow = c(2,2), mar=c(0,0,0,0))

map("usa", col="tomato", border="gray10", fill=TRUE, bg="gray30")
map("state", col="orange", border="gray10", fill=TRUE, bg="gray30")
map("county", col="palegreen", border="gray10", fill=TRUE, bg="gray30")
map("world", col="skyblue", border="gray10", fill=TRUE, bg="gray30")

50

dev.off()

The data we will use here contains US airports and flights among them. The airport file includes
geographic coordinates - latitude and longitude. If you do not have those in your data, you can the
geocode() function from package ggmap to grab the latitude and longitude for an address.

airports <- read.csv("Dataset3-Airlines-NODES.csv", header=TRUE)
flights <- read.csv("Dataset3-Airlines-EDGES.csv", header=TRUE, as.is=TRUE)

head(flights)

Source Target Freq
1 0 109 10
2 1 36 10
3 1 61 10
4 2 152 10
5 3 104 10
6 4 132 10

head(airports)

ID Label Code City latitude longitude
1 0 Adams Field Airport LIT Little Rock, AR 34.72944 -92.22444
2 1 Akron/canton Regional CAK Akron/Canton, OH 40.91611 -81.44222
3 2 Albany International ALB Albany 42.73333 -73.80000
4 3 Albemarle CHO Charlottesville 38.13333 -78.45000
5 4 Albuquerque International ABQ Albuquerque 35.04028 -106.60917
6 5 Alexandria International AEX Alexandria, LA 31.32750 -92.54861
ToFly Visits
1 0 105
2 0 123
3 0 129
4 1 114
5 0 105
6 0 93

Select only large airports: ones with more than 10 connections in the data.
tab <- table(flights$Source)
big.id <- names(tab)[tab>10]
airports <- airports[airports$ID %in% big.id,]
flights <- flights[flights$Source %in% big.id &

flights$Target %in% big.id,]

In order to generate our plot, we will first add a map of the United states. Then we will add a point
on the map for each airport:

51

Plot a map of the united states:
map("state", col="grey20", fill=TRUE, bg="black", lwd=0.1)

Add a point on the map for each airport:
points(x=airports$longitude, y=airports$latitude, pch=19,

cex=airports$Visits/80, col="orange")

Next we will generate a color gradient to use for the edges in the network. Heavier edges will be
lighter in color.

col.1 <- adjustcolor("orange red", alpha=0.4)
col.2 <- adjustcolor("orange", alpha=0.4)
edge.pal <- colorRampPalette(c(col.1, col.2), alpha = TRUE)
edge.col <- edge.pal(100)

For each flight in our data, we will use gcIntermediate() to generate the coordinates of the shortest
arc that connects its start and end point (think distance on the surface of a sphere). After that, we
will plot each arc over the map using lines().

for(i in 1:nrow(flights)) {
node1 <- airports[airports$ID == flights[i,]$Source,]
node2 <- airports[airports$ID == flights[i,]$Target,]

arc <- gcIntermediate(c(node1[1,]$longitude, node1[1,]$latitude),

52

c(node2[1,]$longitude, node2[1,]$latitude),
n=1000, addStartEnd=TRUE)

edge.ind <- round(100*flights[i,]$Freq / max(flights$Freq))

lines(arc, col=edge.col[edge.ind], lwd=edge.ind/30)
}

Note that if you are plotting the network on a full world map, there might be cases when the
shortest arc goes “behind” the map – e.g. exits it on the left side and enters back on the right (since
the left-most and right-most points on the map are actually next to each other). In order to avoid
that, we can usegreatCircle() to generate the full great circle (circle going through those two
points and around the globe, with a center at the center of the earth). Then we can extract from it
the arc connecting our start and end points which does not cross “behind” the map, regardless of
whether it is the shorter or the longer of the two.

This is the end of our tutorial. If you have comments, questions, or want to report typos, please
e-mail rnetviz@ognyanova.net. Check for updated versions of the tutorial at kateto.net/sunbelt2016.

53

https://en.wikipedia.org/wiki/Great_circle
mailto:rnetviz@ognyanova.net
http://kateto.net/sunbelt2016
http://kateto.net/sunbelt2016-r-network-viz

	Introduction: Network Visualization
	Fonts and Colors in R
	Colors in R plots
	Fonts in R plots

	Data format, size, and preparation
	DATASET 1: edgelist
	DATASET 2: matrix

	Plotting networks with igraph
	Turning networks into igraph objects
	Plotting parameters
	Network layouts
	Highlighting aspects of the network
	Highlighting specific nodes or links
	Interactive plotting with tkplot
	Other ways to represent a network
	Plotting two-mode networks

	Quick example using the network package
	Interactive and dnamic network visualizations
	Interactive D3 Networks in R
	Simple plot animations in R
	Interactive and dynamic networks with ndtv-d3

	Overlaying networks on geographic maps

